
Custom Page Fault Handling With eBPF
Tal Zussman∗

Columbia University
tz2294@columbia.edu

Teng Jiang∗
Columbia University
tj2488@columbia.edu

Asaf Cidon
Columbia University

asaf.cidon@columbia.edu

ABSTRACT
Traditionally, page faults have been handled by the kernel, with a
fixed set of handling routines for different types of faults. However,
some applications may benefit from custom page fault handling
routines, allowing them to implement advanced functionality, such
as more efficient live virtual machine migration and application
checkpointing. To this end, Linux introduced the userfaultfd()
syscall, which allows applications to handle their page faults in
userspace. While userfaultfd() has proven useful in several ap-
plications, we identify some key scalability limitations in its design,
which limit both performance and adoption. We propose a system
that allows using eBPF programs to handle page faults in-kernel,
yielding a simpler and more scalable implementation while also
enabling novel use cases, such as accelerating the startup of large
position-independent executables like browsers.

CCS CONCEPTS
• Software and its engineering → Memory management;

KEYWORDS
Operating systems, eBPF, page faults
ACM Reference Format:
Tal Zussman, Teng Jiang, and Asaf Cidon. 2024. Custom Page Fault Handling
With eBPF. InWorkshop on eBPF and Kernel Extensions (eBPF ’24), August
4–8, 2024, Sydney, NSW, Australia. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3672197.3673432

1 BACKGROUND
While page faults are traditionally handled by the kernel, in some
cases it is beneficial to let applications customize page fault han-
dling. For example, virtual machine (VM) live migration allows
virtual clusters to migrate VMs across physical hosts with minimal
disruption to the guest [5]. It is an important capability, commonly
used for VM/host software upgrades, load balancing, hardware fail-
ure handling, and scheduled maintenance [25]. When using the
post-copy migration strategy, most of the VM’s memory gets copied
on-demand, thereby minimally impacting the application [13, 15]. A
similar technique can be used for checkpoint-restore-in-userspace
(CRIU), which saves a process’s state to disk and restores it at a
later point [10]. When a process is restored, rather than copying
its entire state to its address space, relevant pages can be copied
∗Equal contribution

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0712-4/24/08.
https://doi.org/10.1145/3672197.3673432

A
pp

lic
at

io
n

uffd
fault

handler

Memory
Mappings

K
er

ne
l S

pa
ce

U
se

r S
pa

ce

Fault Handling
Thread

Main Thread

pol
l()

 &
rea

d()

ioc
tl(

)

Virtual
Memory

Physical
Pagesuserfaultfd()

uffd

file descriptor table

ioctl()

Fault Triggering Page

Fault Handling Buffer Page

Local
Page

Storage

Remote
Page

Server

⑥

②

③

⑨
⑧

①

④

⑤

⑦

Figure 1: userfaultfd() workflow.

on-demand, reducing start-up time. While such functionality could
be supported through significant kernel modifications [13], a more
general-purpose solution is desirable.

To solve this problem, Linux introduced the userfaultfd()
syscall, allowing applications to handle page faults in userspace
with a dedicated fault-handling thread [2, 17]. We use the CRIU
application to illustrate a userfaultfd() workflow (Figure 1).

Assume we want to restore an application to a checkpointed
state with CRIU (i.e. its state is stored on a local or remote disk). In
this case, the CRIU client sets up an initial subset of the application’s
pages. The remaining pages aren’t initialized yet, and they only get
copied when the application tries to access them, requiring a cus-
tom page fault handler. The CRIU client then calls userfaultfd(),
creating a new uffd (userfault file descriptor), and uses ioctl() to
register the regions of virtual memory (the application’s remain-
ing pages) it should handle (1). After creating a fault-handling
thread that polls on the uffd, the application can safely resume
execution. When the application attempts to access an unmapped
page (2 and 3), a page fault is raised. If the relevant page is in
a userfaultfd()-registered region, the kernel marks the uffd as
ready, waking up the fault-handling thread, which then reads from
the uffd (4). For CRIU, the fault-handling thread will read the
relevant data from the application’s (local or remote) checkpoint (5
) into a local buffer (6). The thread then submits a userfaultfd()
command using ioctl() (7), which atomically copies the data
into the application’s address space, resolving the fault (8 , 9).

In addition to CRIU, userfaultfd() has seen adoption in a
number of large projects, along with more experimental work
[18, 22, 23, 26–28]. userfaultfd() is used by QEMU for VM post-
copy migration, while Firecracker uses it to lazily restore microVM
memory from a snapshot [1]. The Android Runtime’s garbage
collector uses userfaultfd() in its compaction phase to track
page accesses [3, 12]. Additionally, the authors of userfaultfd()
have identified several additional potential use cases, such as dis-
tributed shared memory, language runtimes, and JIT compilers,

71

https://doi.org/10.1145/3672197.3673432
https://doi.org/10.1145/3672197.3673432
https://doi.org/10.1145/3672197.3673432
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672197.3673432&domain=pdf&date_stamp=2024-08-04

eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia Tal Zussman, Teng Jiang, and Asaf Cidon

along with adding support for handling write-protect and minor
faults [2, 6, 7, 24]. Finally, we believe that there exist additional
use cases for custom page fault handling which cannot utilize
userfaultfd() due to its limitations, such as lazily resolving data
relocations for position-independent executables in the dynamic
linker, yielding faster program start-up [4] (see §2).

2 LIMITATIONS OF USERSPACE FAULT
HANDLING

userfaultfd()’s design allows applications to fully customize
page fault handling, with practically no limitations on the fault-
handling routine. However, its design also incurs significant costs.
In this section, we describe three limitations of userfaultfd():
scalability, applicability, and security.

Scalability. Inmulti-threaded applications, typically each thread’s
page faults are handled in-kernel by the respective thread. How-
ever, for applications using userfaultfd(), there is only one fault-
handling thread, which can become a performance bottleneck. To il-
lustrate this, we run an experimentwith andwithout userfaultfd():
we set up a pool of threads, each of which is allocated 50 pages of
anonymous memory, and access each of those pages, generating
50 page faults per thread. We then fill each page with a fixed value,
either in the handling routine (using userfaultfd()) or in the
thread loop (default fault handling). As shown in Figure 2, as the
number of threads increases, userfaultfd() takes significantly
longer to handle page faults and scales worse than the standard
kernel handling.

Additionally, each userfaultfd() fault-handling routine re-
quires at least three syscall invocations: poll(), read(), and ioctl().
Each of these syscalls requires user-kernel crossings, which add
overhead for each page fault, in addition to the cost of context
switching to the fault-handling thread. Finally, userfaultfd()’s
design may lead to unnecessarily copying data between userspace
and kernel space. For example, in the VM migration use case, data
read from the network is copied to userspace through recv(), and
then copied back to the kernel as part of the userfaultfd() res-
olution code. Since the data is already present in the kernel, this
overhead is unnecessary.

0 100 200 300 400 500
Number of Threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
(s

ec
on

ds
)

userfaultfd() handling
Kernel handling

Figure 2: Latency to handle 50 page faults per thread.

Applicability. The use of a dedicated fault-handling thread
limits which systems can use userfaultfd(). Specifically, applica-
tions that fork may not be able to use userfaultfd(), as forking
in a multi-threaded environment only clones the thread that calls
fork(), potentially leading to incorrect behavior. This effectively

prevents userfaultfd() from being used in interchangeable li-
braries, such as the dynamic linker or garbage collectors, which
cannot restrict application behavior in such a way.

Security. userfaultfd() has been used in a number of kernel
exploits [8, 14, 16, 20, 21], many of which have taken advantage of
its ability to indefinitely block kernel execution at a specific point.
While mitigations have been developed [8], container runtimes such
as Docker have blocked its usage in their default configurations due
to these security concerns [11], further limiting its applicability.

3 DESIGN
In order to mitigate some of the downsides of userfaultfd(),
we propose an eBPF-based system to register custom page fault
handlers in-kernel. This system requires two key modifications to
the kernel, described below.

Per-VMA eBPF programs. Each eBPF fault-handling program
must be associated with a range of the process’s address space.
The relevant kernel data structure is the struct vm_area_struct,
which represents a contiguous virtual memory area (VMA). As
such, we add support for per-VMA eBPF programs, similar to the
kernel’s support for per-cgroup eBPF programs [19]. After loading
and verifying the eBPF program, the application attaches it to a
specific address range. The kernel then translates that address range
to a VMA (or series of VMAs), and associates the eBPF program
with those VMAs. If the address range starts or ends within a VMA,
the kernel will split the VMA, as is done with userfaultfd().

Fault-handling modifications.We modify the kernel’s page
fault-handling routine to check if an eBPF program is attached to the
relevant VMA. If so, we run the eBPF program, providing metadata
about the fault, along with access to a newly allocated page to
fill with the desired contents. After the eBPF program executes,
we resolve the fault by setting the relevant memory mappings to
point to the new page. This removes the need for an additional
memory copy, as is done in userfaultfd(), which fills the page
in userspace and then copies it into the kernel. We envision this
design enabling zero-copy page faults, with data read from the disk
or network written directly to the relevant page.

For simple fault-handling routines, the aforementioned kernel
changes should be sufficient. However, for more complex appli-
cations such as VM migration which require reading data from
the network or disk, we envision adding eBPF helpers to support
such operations, along with building on the existing support for
sleepable eBPF programs [9].

We believe that this implementation removes the need for an
additional fault-handling thread and reduces unnecessary kernel
crossings or data copying. While eBPF may somewhat limit the
flexibility of the custom fault handlers, we believe that eBPF is
mature enough to handle interesting and complex use cases. Addi-
tionally, the eBPF verifier could be used to limit the operations used
in the handling routine, such as sleeping indefinitely, potentially
addressing the security concerns that plague userfaultfd().

4 ACKNOWLEDGMENTS
This work was supported by Intel and IBM, and NSF awards CNS-
2143868 and CNS-2104292. Tal Zussman was supported by NSF
award DGE-2036197.

72

Custom Page Fault Handling With eBPF eBPF ’24, August 4–8, 2024, Sydney, NSW, Australia

REFERENCES
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
Virtualization for Serverless Applications. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20). USENIX Association, Santa
Clara, CA, 419–434. https://www.usenix.org/conference/nsdi20/presentation/
agache

[2] Andrea Arcangeli. 2016. Userland Page Faults and Beyond: Why
How and What’s Next. https://www.linux-kvm.org/images/1/10/
01Wed-1415-LinuxCON-aarcangeli-userfaultfd.pdf. (2016).

[3] Seang Chau. 2022. Android 13 is in AOSP. https://android-developers.googleblog.
com/2022/08/android-13-is-in-aosp.html. (2022).

[4] Chromium [n. d.]. Native Relocations. https://chromium.
googlesource.com/chromium/src/+/master/docs/native_relocations.md#
Linux-Android-Relocations-ELF-Format. ([n. d.]).

[5] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live migration of virtual
machines. In Proceedings of the 2nd Conference on Symposium on Networked Sys-
tems Design & Implementation - Volume 2 (NSDI’05). USENIX Association, USA,
273–286.

[6] Jonathan Corbet. 2017. The next steps for userfaultfd(). https://lwn.net/Articles/
718198. (2017).

[7] Jonathan Corbet. 2019. Write-protect for userfaultfd(). https://lwn.net/Articles/
787308. (2019).

[8] Jonathan Corbet. 2020. Blocking userfaultfd() kernel-fault handling. https:
//lwn.net/Articles/819834/. (2020).

[9] Jonathan Corbet. 2020. Sleepable BPF programs. https://lwn.net/Articles/825415/.
(2020).

[10] CRIU Project 2019. CRIU. https://criu.org. (2019).
[11] Docker [n. d.]. Seccomp security profiles for Docker. ([n. d.]). https://docs.

docker.com/engine/security/seccomp.
[12] Lokesh Gidra, Hans-J. Boehm, and Joel Fernandes. 2020. Utilizing the Linux

Userfaultfd System Call in a Compaction Phase of a Garbage Collection Process.
Technical Disclosure Commons (12 10 2020). https://www.tdcommons.org/dpubs_
series/3671

[13] Michael Hines, Umesh Deshpande, and Kartik Gopalan. 2009. Post-copy live
migration of virtual machines. Operating Systems Review 43 (07 2009), 14–26.
https://doi.org/10.1145/1618525.1618528

[14] Jann Horn. 2016. CVE-2016-4557: Linux: UAF via double-fdput() in
bpf(BPF_PROG_LOAD) error path. https://bugs.chromium.org/p/project-zero/
issues/detail?id%3D808. (2016).

[15] Jaeseong Im, Jongyul Kim, Youngjin Kwon, and Seungryoul Maeng. 2022. On-
Demand Virtualization for Post-Copy OS Migration in Bare-Metal Cloud. IEEE
Transactions on Cloud Computing PP (01 2022), 1–1. https://doi.org/10.1109/TCC.
2022.3179485

[16] Zhenpeng Lin, YuhangWu, and Xinyu Xing. 2022. DirtyCred: Escalating Privilege
in Linux Kernel. In Proceedings of the 2022 ACM SIGSAC Conference on Computer

and Communications Security (CCS ’22). Association for Computing Machinery,
New York, NY, USA, 1963–1976. https://doi.org/10.1145/3548606.3560585

[17] Linux Documentation [n. d.]. Userfaultfd. https://www.kernel.org/doc/
Documentation/vm/userfaultfd.txt. ([n. d.]).

[18] Robert Lyerly, Xiaoguang Wang, and Binoy Ravindran. 2020. Dynamic and
Secure Memory Transformation in Userspace. In Computer Security – ESORICS
2020: 25th European Symposium on Research in Computer Security, ESORICS 2020,
Guildford, UK, September 14–18, 2020, Proceedings, Part I. Springer-Verlag, Berlin,
Heidelberg, 237–256. https://doi.org/10.1007/978-3-030-58951-6_12

[19] Daniel Mack. 2016. Per-cgroup BPF Programs. https://lore.kernel.org/all/
1479916350-28462-1-git-send-email-daniel@zonque.org/T/. (2016).

[20] Vitaly Nikolenko. 2016. CVE-2016-6187: Exploiting Linux kernel heap off-by-one.
https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit. (2016).

[21] Vitaly Nikolenko. 2018. Linux Kernel universal heap spray. https://duasynt.com/
blog/linux-kernel-heap-spray. (2018).

[22] Ivy Peng, Marty McFadden, Eric Green, Keita Iwabuchi, Kai Wu, Dong Li, Roger
Pearce, and Maya Gokhale. 2019. UMap: Enabling Application-driven Optimiza-
tions for Page Management. In 2019 IEEE/ACMWorkshop on Memory Centric High
Performance Computing (MCHPC). 71–78. https://doi.org/10.1109/MCHPC49590.
2019.00017

[23] Ivy B. Peng, Maya B. Gokhale, Karim Youssef, Keita Iwabuchi, and Roger Pearce.
2022. Enabling Scalable and Extensible Memory-Mapped Datastores in Userspace.
IEEE Transactions on Parallel and Distributed Systems 33, 4 (2022), 866–877. https:
//doi.org/10.1109/TPDS.2021.3086302

[24] Mike Rapoport. 2017. Userfaultfd: Post-copy VM Migration and Beyond.
https://blog.linuxplumbersconf.org/2017/ocw/system/presentations/4699/
original/userfaultfd_%20post-copy%20VM%20migration%20and%20beyond.pdf.
(2017).

[25] Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya Spivak,
Michael Krebs, Miche Baker-Harvey, and Tyler Sanderson. 2018. VM Live Mi-
gration At Scale. SIGPLAN Not. 53, 3 (Mar 2018), 45–56. https://doi.org/10.1145/
3296975.3186415

[26] Timothy Stamler, Deukyeon Hwang, Amanda Raybuck, Wei Zhang, and Si-
mon Peter. 2022. zIO: Accelerating IO-Intensive Applications with Transpar-
ent Zero-Copy IO. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). USENIX Association, Carlsbad, CA, 431–445.
https://www.usenix.org/conference/osdi22/presentation/stamler

[27] Ville Tuulos. 2016. Querying Data in Amazon S3 Directly with User-Space Page
Fault Handling. https://tech.nextroll.com/blog/data/2016/11/29/traildb-mmap-s3.
html. (2016).

[28] Kan Zhong, Wenlin Cui, Xin Chen, Qiao Li, Zhe Yang, Youyou Lu, Xiaodan Yan,
Siwei Luo, Qizhao Yuan, and Keji Huang. 2021. Revisiting Swapping in User-Space
With Lightweight Threading. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 42 (2021), 4205–4218. https://api.semanticscholar.
org/CorpusID:236493177

73

https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.linux-kvm.org/images/1/10/01Wed-1415-LinuxCON-aarcangeli-userfaultfd.pdf
https://www.linux-kvm.org/images/1/10/01Wed-1415-LinuxCON-aarcangeli-userfaultfd.pdf
https://android-developers.googleblog.com/2022/08/android-13-is-in-aosp.html
https://android-developers.googleblog.com/2022/08/android-13-is-in-aosp.html
https://chromium.googlesource.com/chromium/src/+/master/docs/native_relocations.md#Linux-Android-Relocations-ELF-Format
https://chromium.googlesource.com/chromium/src/+/master/docs/native_relocations.md#Linux-Android-Relocations-ELF-Format
https://chromium.googlesource.com/chromium/src/+/master/docs/native_relocations.md#Linux-Android-Relocations-ELF-Format
https://lwn.net/Articles/718198
https://lwn.net/Articles/718198
https://lwn.net/Articles/787308
https://lwn.net/Articles/787308
https://lwn.net/Articles/819834/
https://lwn.net/Articles/819834/
https://lwn.net/Articles/825415/
https://criu.org
https://docs.docker.com/engine/security/seccomp
https://docs.docker.com/engine/security/seccomp
https://www.tdcommons.org/dpubs_series/3671
https://www.tdcommons.org/dpubs_series/3671
https://doi.org/10.1145/1618525.1618528
https://bugs.chromium.org/p/project-zero/issues/detail?id%3D808
https://bugs.chromium.org/p/project-zero/issues/detail?id%3D808
https://doi.org/10.1109/TCC.2022.3179485
https://doi.org/10.1109/TCC.2022.3179485
https://doi.org/10.1145/3548606.3560585
https://www.kernel.org/doc/Documentation/vm/userfaultfd.txt
https://www.kernel.org/doc/Documentation/vm/userfaultfd.txt
https://doi.org/10.1007/978-3-030-58951-6_12
https://lore.kernel.org/all/1479916350-28462-1-git-send-email-daniel@zonque.org/T/
https://lore.kernel.org/all/1479916350-28462-1-git-send-email-daniel@zonque.org/T/
https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit
https://duasynt.com/blog/linux-kernel-heap-spray
https://duasynt.com/blog/linux-kernel-heap-spray
https://doi.org/10.1109/MCHPC49590.2019.00017
https://doi.org/10.1109/MCHPC49590.2019.00017
https://doi.org/10.1109/TPDS.2021.3086302
https://doi.org/10.1109/TPDS.2021.3086302
https://blog.linuxplumbersconf.org/2017/ocw/system/presentations/4699/original/userfaultfd_%20post-copy%20VM%20migration%20and%20beyond.pdf
https://blog.linuxplumbersconf.org/2017/ocw/system/presentations/4699/original/userfaultfd_%20post-copy%20VM%20migration%20and%20beyond.pdf
https://doi.org/10.1145/3296975.3186415
https://doi.org/10.1145/3296975.3186415
https://www.usenix.org/conference/osdi22/presentation/stamler
https://tech.nextroll.com/blog/data/2016/11/29/traildb-mmap-s3.html
https://tech.nextroll.com/blog/data/2016/11/29/traildb-mmap-s3.html
https://api.semanticscholar.org/CorpusID:236493177
https://api.semanticscholar.org/CorpusID:236493177

	Abstract
	1 Background
	2 Limitations of Userspace Fault Handling
	3 Design
	4 Acknowledgments
	References

