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ABSTRACT
Traditionally, page faults have been handled by the kernel, with a
fixed set of handling routines for different types of faults. However,
some applications may benefit from custom page fault handling
routines, allowing them to implement advanced functionality, such
as more efficient live virtual machine migration and application
checkpointing. To this end, Linux introduced the userfaultfd()
syscall, which allows applications to handle their page faults in
userspace. While userfaultfd() has proven useful in several ap-
plications, we identify some key scalability limitations in its design,
which limit both performance and adoption. We propose a system
that allows using eBPF programs to handle page faults in-kernel,
yielding a simpler and more scalable implementation while also
enabling novel use cases, such as accelerating the startup of large
position-independent executables like browsers.
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1 BACKGROUND
While page faults are traditionally handled by the kernel, in some
cases it is beneficial to let applications customize page fault han-
dling. For example, virtual machine (VM) live migration allows
virtual clusters to migrate VMs across physical hosts with minimal
disruption to the guest [5]. It is an important capability, commonly
used for VM/host software upgrades, load balancing, hardware fail-
ure handling, and scheduled maintenance [25]. When using the
post-copy migration strategy, most of the VM’s memory gets copied
on-demand, thereby minimally impacting the application [13, 15]. A
similar technique can be used for checkpoint-restore-in-userspace
(CRIU), which saves a process’s state to disk and restores it at a
later point [10]. When a process is restored, rather than copying
its entire state to its address space, relevant pages can be copied
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Figure 1: userfaultfd() workflow.

on-demand, reducing start-up time. While such functionality could
be supported through significant kernel modifications [13], a more
general-purpose solution is desirable.

To solve this problem, Linux introduced the userfaultfd()
syscall, allowing applications to handle page faults in userspace
with a dedicated fault-handling thread [2, 17]. We use the CRIU
application to illustrate a userfaultfd() workflow (Figure 1).

Assume we want to restore an application to a checkpointed
state with CRIU (i.e. its state is stored on a local or remote disk). In
this case, the CRIU client sets up an initial subset of the application’s
pages. The remaining pages aren’t initialized yet, and they only get
copied when the application tries to access them, requiring a cus-
tom page fault handler. The CRIU client then calls userfaultfd(),
creating a new uffd (userfault file descriptor), and uses ioctl() to
register the regions of virtual memory (the application’s remain-
ing pages) it should handle ( 1 ). After creating a fault-handling
thread that polls on the uffd, the application can safely resume
execution. When the application attempts to access an unmapped
page ( 2 and 3 ), a page fault is raised. If the relevant page is in
a userfaultfd()-registered region, the kernel marks the uffd as
ready, waking up the fault-handling thread, which then reads from
the uffd ( 4 ). For CRIU, the fault-handling thread will read the
relevant data from the application’s (local or remote) checkpoint ( 5
) into a local buffer ( 6 ). The thread then submits a userfaultfd()
command using ioctl() ( 7 ), which atomically copies the data
into the application’s address space, resolving the fault ( 8 , 9 ).

In addition to CRIU, userfaultfd() has seen adoption in a
number of large projects, along with more experimental work
[18, 22, 23, 26–28]. userfaultfd() is used by QEMU for VM post-
copy migration, while Firecracker uses it to lazily restore microVM
memory from a snapshot [1]. The Android Runtime’s garbage
collector uses userfaultfd() in its compaction phase to track
page accesses [3, 12]. Additionally, the authors of userfaultfd()
have identified several additional potential use cases, such as dis-
tributed shared memory, language runtimes, and JIT compilers,
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along with adding support for handling write-protect and minor
faults [2, 6, 7, 24]. Finally, we believe that there exist additional
use cases for custom page fault handling which cannot utilize
userfaultfd() due to its limitations, such as lazily resolving data
relocations for position-independent executables in the dynamic
linker, yielding faster program start-up [4] (see §2).

2 LIMITATIONS OF USERSPACE FAULT
HANDLING

userfaultfd()’s design allows applications to fully customize
page fault handling, with practically no limitations on the fault-
handling routine. However, its design also incurs significant costs.
In this section, we describe three limitations of userfaultfd():
scalability, applicability, and security.

Scalability. Inmulti-threaded applications, typically each thread’s
page faults are handled in-kernel by the respective thread. How-
ever, for applications using userfaultfd(), there is only one fault-
handling thread, which can become a performance bottleneck. To il-
lustrate this, we run an experimentwith andwithout userfaultfd():
we set up a pool of threads, each of which is allocated 50 pages of
anonymous memory, and access each of those pages, generating
50 page faults per thread. We then fill each page with a fixed value,
either in the handling routine (using userfaultfd()) or in the
thread loop (default fault handling). As shown in Figure 2, as the
number of threads increases, userfaultfd() takes significantly
longer to handle page faults and scales worse than the standard
kernel handling.

Additionally, each userfaultfd() fault-handling routine re-
quires at least three syscall invocations: poll(), read(), and ioctl().
Each of these syscalls requires user-kernel crossings, which add
overhead for each page fault, in addition to the cost of context
switching to the fault-handling thread. Finally, userfaultfd()’s
design may lead to unnecessarily copying data between userspace
and kernel space. For example, in the VM migration use case, data
read from the network is copied to userspace through recv(), and
then copied back to the kernel as part of the userfaultfd() res-
olution code. Since the data is already present in the kernel, this
overhead is unnecessary.
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Figure 2: Latency to handle 50 page faults per thread.

Applicability. The use of a dedicated fault-handling thread
limits which systems can use userfaultfd(). Specifically, applica-
tions that fork may not be able to use userfaultfd(), as forking
in a multi-threaded environment only clones the thread that calls
fork(), potentially leading to incorrect behavior. This effectively

prevents userfaultfd() from being used in interchangeable li-
braries, such as the dynamic linker or garbage collectors, which
cannot restrict application behavior in such a way.

Security. userfaultfd() has been used in a number of kernel
exploits [8, 14, 16, 20, 21], many of which have taken advantage of
its ability to indefinitely block kernel execution at a specific point.
While mitigations have been developed [8], container runtimes such
as Docker have blocked its usage in their default configurations due
to these security concerns [11], further limiting its applicability.

3 DESIGN
In order to mitigate some of the downsides of userfaultfd(),
we propose an eBPF-based system to register custom page fault
handlers in-kernel. This system requires two key modifications to
the kernel, described below.

Per-VMA eBPF programs. Each eBPF fault-handling program
must be associated with a range of the process’s address space.
The relevant kernel data structure is the struct vm_area_struct,
which represents a contiguous virtual memory area (VMA). As
such, we add support for per-VMA eBPF programs, similar to the
kernel’s support for per-cgroup eBPF programs [19]. After loading
and verifying the eBPF program, the application attaches it to a
specific address range. The kernel then translates that address range
to a VMA (or series of VMAs), and associates the eBPF program
with those VMAs. If the address range starts or ends within a VMA,
the kernel will split the VMA, as is done with userfaultfd().

Fault-handling modifications.We modify the kernel’s page
fault-handling routine to check if an eBPF program is attached to the
relevant VMA. If so, we run the eBPF program, providing metadata
about the fault, along with access to a newly allocated page to
fill with the desired contents. After the eBPF program executes,
we resolve the fault by setting the relevant memory mappings to
point to the new page. This removes the need for an additional
memory copy, as is done in userfaultfd(), which fills the page
in userspace and then copies it into the kernel. We envision this
design enabling zero-copy page faults, with data read from the disk
or network written directly to the relevant page.

For simple fault-handling routines, the aforementioned kernel
changes should be sufficient. However, for more complex appli-
cations such as VM migration which require reading data from
the network or disk, we envision adding eBPF helpers to support
such operations, along with building on the existing support for
sleepable eBPF programs [9].

We believe that this implementation removes the need for an
additional fault-handling thread and reduces unnecessary kernel
crossings or data copying. While eBPF may somewhat limit the
flexibility of the custom fault handlers, we believe that eBPF is
mature enough to handle interesting and complex use cases. Addi-
tionally, the eBPF verifier could be used to limit the operations used
in the handling routine, such as sleeping indefinitely, potentially
addressing the security concerns that plague userfaultfd().
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