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Problem Statement

The OS page cache is widely used by a large class of applications

It significantly affects application performance by reducing excessive access to storage

However, its LRU-like eviction policy is inflexible and performs poorly with specific workloads

Result: performance left on the table!

Background: Page Cache

Linux’s default eviction policy is an LRU
approximation algorithm with two FIFO lists:
the active and inactive lists

Pages are added to the tail of the inactive list

Repeatedly accessed pages will eventually be

promoted to the active list

Pages are evicted from the head of the inactive list,

and demoted from the active list to the inactive list

Each cgroup maintains its own pair of active

and inactive lists

The page cache manages pages as folios
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Figure 1. Default Linux page cache policy.

Existing Approaches

Can we modify the page cache policy?

Very difficult to modify: hardcoded and requires extensive kernel knowledge
Took Google years to upstream its proposed Multi-Generational LRU (MGLRU) policy

Any changes would modify the policy globally, affecting all applications

Can existing customization interfaces solve this?

fadvise() and other interfaces provide hints which may be ignored

Depending on the workload, may not have a performance impact

Still subject to the kernel’s inflexible LRU-like policy

What about userspace-based caching?

Userspace caches require significant effort to implement, are typically not dynamically
sized, and are tough to share across processes
In contrast to the page cache, they can lead to duplicated memory and lower resource utilization

Applications with userspace caches may still use the page cache as a second-tier cache

Our Approach: eBPF-Based Policies

We want to enable applications to run custom page cache policies within Linux.

eBPF

eBPF allows userspace functions to run within the Linux kernel in a safe and controlled

manner by verifying them in advance

eBPF has been used for observability, security, networking, scheduling, and more in Linux

Challenges

Scalability
Modern SSDs support millions of IOPS, so the page cache must handle millions of events per second

Any policies and changes to the page cache must be low overhead

Flexibility
There exists a wide variety of caching algorithms, many of which require custom data structures

An interface for custom policies must be flexible enough to accommodate the diversity of caching algorithms

Isolation
One application’s policy should not interfere with those of other applications

However, pages should still be able to be shared between applications

Security
Custom policies must not lead to unsafe memory references or kernel crashes

cache_ext: Design and Implementation

Interface

cache_ext allows users to run custom page

cache policy functions, which are

implemented as eBPF programs

Page cache events trigger policy functions
Policy initialization

Folio admission

Folio access

Folio removal

Request for eviction

Policy functions operate on variable-sized
eviction lists

Many complex eviction policies can be

implemented exactly or approximately using lists

Eviction lists store pointers to folios. cache_ext

operates on lists using eBPF kfuncs.

On eviction requests, a policy proposes a
batch of folios for the kernel to evict

The policy chooses folios by iterating over eviction

lists and selecting candidates for eviction based on

policy metadata (e.g., recency, frequency, etc.)
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Figure 2. Overview of cache_ext.

Eviction list API

u64 list_create(struct mem_cgroup *memcg)
int list_add(u64 list, struct folio *f, bool tail)
int list_move(u64 list, struct folio *f, bool tail)
int list_del(struct folio *f)
int list_iterate(struct mem_cgroup *memcg, u64 list,
s64(*iter_fn)(int id, struct folio *f),
struct iter_opts *opts, struct eviction_ctx *ctx)

Table 1. cache_ext eviction list API.

Isolation

We implement policies per-cgroup. Within a cgroup, processes share an eviction policy.
Different cgroups can use their own policies.

Matches modern deployment practices: isolate applications in their own memory cgroup

Preserves memory sharing: processes from cgroup A can still access pages managed by cgroup B

Security

Memory safety: eBPF policy functions must return valid folio pointers to the kernel
We implement a valid folios registry in-kernel. When a folio is inserted, it is added to the registry, and

removed on eviction. The kernel uses the registry to verify that eviction candidates are valid folios.

Eviction fallback: We protect against adversarial policy behavior with in-kernel fallbacks
For example, if a policy does not provide sufficient eviction candidates, the kernel uses the default policy

Real-WorldWorkloads

We run several generic cache_ext policies on YCSB and Twitter trace workloads. cache_ext’s

LFU policy achieved up to 37% higher throughput on YCSB, while no single policy dominated the

Twitter traces. In general, there is no one-size-fits-all policy that performs best for all workloads.

cache_ext enables the experimentation necessary to maximize performance.
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(a) YCSB workloads.
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(b) Twitter trace workloads.

Figure 3. Comparison of Linux and cache_ext policies on YCSB and Twitter cache trace workloads.

Application-Informed Policies

Example: a database serving both small GET queries (e.g., transactions) and larger, slower
SCAN-like queries (e.g., analytics).

SCAN data pollutes the page cache. Prioritize GETs using two eviction lists: GET data and SCAN data.

Maintain an eBPF map with SCAN thread PIDs. On folio insertion, choose list based on PID of current task.

Evict folios primarily from the SCAN list.
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(a) Mixed SCAN/GET workload policy implementation.
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(b) Mixed SCAN/GET: GET throughput.

Figure 4. Mixed SCAN/GET policy.

Application-aware policies can significantly improve performance
70% higher GET throughput and 58% lower tail latency than baseline

Existing Linux page cache customization interfaces (fadvise()) are insufficient

Multi-Tenancy

Example: Two cgroups, one running a
LevelDB YCSB C workload, and the other
running a file search workload with ripgrep.

Configs: both default, both LFU, both MRU, and

“tailored”: YCSB with LFU and file search with MRU.

Tailored is best: 50% and 79% increase for

YCSB and file search, respectively

cache_ext with per-cgroup policies enables

fine-grained control and better performance
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Figure 5. Multi-tenancy results: a file search workload

(number of searches executed) and a YCSB C workload

(throughput) running concurrently in two cgroups.

Implementation Complexity

Policy eBPF LoC Userspace LoC

Admission filter 35 262

FIFO 56 131

MRU 101 101

LFU 215 110

S3-FIFO 287 157

GET-SCAN 324 112

LHD 367 165

MGLRU 689 105

Table 2. Lines of code in cache_ext policies.

Overall implementation complexity for

cache_ext policies is modest, even for

sophisticated policies.

cache_ext and policies are open-source. We

expect most developers will use and

experiment with pre-existing policies.

Can implement new policies for advanced

use cases, policy innovations.

Conclusion

cache_ext enables safe and performant customization of Linux page

cache policies, allowing applications to choose a policy matching their

needs. We believe cache_ext opens the door to exploring new dynamic

page cache policies and experimenting with policy innovations in a

realistic setting.

Full paper and code at github.com/cache-ext/cache_ext

github.com/cache-ext/cache_ext

