2% COLUMBIA cache_ext: Customizing the Page Cache with eBPF

-~ ENGINEERING Tal Zussman™* loannis Zarkadas™* Jeremy Carin® Andrew Cheng* ubertus Franke ¢ Jonas Pfefferle ¢ Asaf Cidon'? ===
1Columbia University °|BM Research
Problem Statement cache_ext: Design and Implementation Application-Informed Policies
» The OS page cache is widely used by a large class of applications Interface - EéaAnl]\Jpll'elé 3 databas(e servin% t%otf)w small GET queries (e.g., transactions) and larger, slower
. |t <ion cat ' ' = cache_ext allows users to run custom page ~HIKE QUENIES €.8., analytits).
t significantly affects application performance by reducing excessive access to storage Cache_ olicy functions. which are Pas Application e = SCAN data pollutes the page cache. Prioritize GETs using two eviction lists: GET data and SCAN data.
= However, its LRU-like eviction policy is inflexible and performs poorly with specific workloads . P tyd BPF, 5 = Maintain an eBPF map with SCAN thread PIDs. On folio insertion, choose list based on PID of current task.
implemented as € programs serspace = Evict folios primarily from the SCAN list
. . | . . [ttt oSNNI UV s primarily from the ist.
Result: performance left on the table. = Page cache events trigger policy functions Kernel i '
= Policy initialization folio| |folio| |folio| [folio
= Folio admission
: s 8000
Background. Page Cache = Folio access Linux Page Cache ggg ggg _ B Default (Linux)
= Folio removal Eventsl TActionS 0 70001 e FADV_NOREUSE (Linux)
= Request for eviction CFT Pool J ISCAN ool £ 6000| mmm FADV_DONTNEED (Linux)
L L. L . . . : LevelDB -
 Linux’s default eviction policy is an LRU U " Policy functions operate on variable-sized valid Folios Registry Userspace > 35000 EAAGDL\’F{SESUENT'AL (Linux)
approximation algorithm with two FIFO lists: | ‘ eviction lists e e — 5 4000{ L0)
the active and inactive lists Acve ISt = Many complex eviction policies can be TR BB — <3000 -
» Pages are added to the tail of the inactive list implemented exactly or approximately using lists Eviction Lists \ 8’2 _
= Repeatedly accessed pages will eventually be N = Eviction lists store pointers to folios. cache_ext x o g 000
promoted to the active list ’@ operates on lists using eBPF kfuncs. 5 Iv e | Feverr 1000
= Pages are evicted from the head of the inactive list, = On eviction requests, a policy proposes a olicy % 0! _
and demoted from the active list to the inactive list el U Hra | L hatch of folios for the kernel to evict Func:ons | SCENEE I | | Mixed GET/SCAN
= Each cgroup maintains its own pair of active e) = The policy chooses folios by iterating over eviction Poﬁcy (a) Mixed SCAN/GET workload policy implementation. (b) Mixed SCAN/GET: GET throughput.
and inactive lists etion A ||St§ and selecting candidates for eviction based on Metadata mL """"""""""""""""" Figure 4. Mixed SCAN/GET policy.
. policy metadata (e.g., recency, frequency, etc.) o o o .
= The page cache manages pages as folios cache_ext = Application-aware policies can significantly improve performance
Figure 1. Default Linux page cache policy. = /0% higher GET throughput and 58% lower tail latency than baseline
Figure 2. Overview of cache_ext = Existing Linux page cache customization interfaces (fadvise ()) are insufficient
Existing Approaches Eviction list API
u64 list_create(struct mem_cgroup *memcg) '
Can we modify the page cache policy? int list_add(u64 list, struct folio *f, bool tail) Multi-Tenancy

int list move(u64 list, struct folio *f, bool tail)
= Very difficult to modify: hardcoded and requires extensive kernel knowledge int list_del(struct folio *f)

- : o - : int list_iterate(struct mem_cgroup *memcg, u64 list,) .
Took Google years to upstr.eam its prop.osed Multi Generaho.nal LRU (I\/IG.LRU.) policy S64(xiter fn) (int id, stract folio *f) . = Example: Two cgroups, one running a 16000 "o befautt (L
= Any changes would modify the policy globally, affecting all applications ctruct iter opts *opts, struct eviction ctx *Ctx) LevelDB YCSB C workload, and the other 140001 “4— LFU (cache_ext)
- - running a file search workload with ripgrep. S 12000 = MRU (cache ext)
Can existing customization interfaces solve this: Table 1. cache_ext eviction list API. = Configs: both default, both LFU, both MRU, and 5 10000 —%— Tailored (cache_ext)
. « . N, . . o
= fadvise () and other interfaces provide hints which may be ignored Isolation tailored’: YCSB with LFU and file search with MRU. i 8000 " »
. . - : ' . 0 o/
> Liepending on dne workdoad, mey not MEvE @ BEfomenes Imgac We implement policies per-cgroup. Within a cgroup, processes share an eviction policy talored Is best: 5U% and 77/ Increase for 5 6000
s GH ' e ' i ' nvY -5 ' L ’ ' YCSB and file search, respectivel = °
Still subject to the kernel’s inflexible LRU-like policy Different cgroups can use their own policies. . 2 . V 2 000
What about userspace-based caching? = Matches modern deployment practices: isolate applications in their own memory cgroup - CaChe_e.Xt with per-cgroup policies enables - 2000, .
_ - . ’ . = Preserves memory sharing: processes from cgroup A can still access pages managed by cgroup B fine-grained control and better performance
= Userspace caches require significant effort to implement, are typically not dynamically 00 50 40 60 80 160 150 140
sized, and are tough to share across processes Security File search (iterations)
= |n contrast to the page cache, they can lead to duplicated memory and lower resource utilization
= Applications with userspace caches may still use the page cache as a second-tier cache * Memory safety: eBPF policy functions must return valid folio pointers to the kernel Figure 5. Multi-tenancy results: a file search workload

(number of searches executed) and a YCSB C workload

= \We implement a valid folios registry in-kernel. When a folio is inserted, it is added to the registry, and . .
(throughput) running concurrently in two cgroups.

removed on eviction. The kernel uses the registry to verify that eviction candidates are valid folios.
= Eviction fallback: We protect against adversarial policy behavior with in-kernel fallbacks
» For example, if a policy does not provide sufficient eviction candidates, the kernel uses the default policy

Our Approach: eBPF-Based Policies

Implementation Complexity

We want to enable applications to run custom page cache policies within Linux.

-BPF Real-World Workloads
| o | | | - | | Policy eBPF LoC Userspace LoC « Overall implementation complexity for
= eBPF allows userspace functions to run within the Linux kernel in a safe and controlled We run.severaol generic cache_e.xt policies on YCSB and Tvv@er trac.e vvorquads. cgche_exts Admission filter 35 262 cache_ext policies is modest, even for
manner by verifying them in advance LFU policy achieved up to 37/% higher throughput on YCSB, while no single policy dominated the CIFO 56 131 sophisticated policies.
= eBPF has been used for observability, security, networking, scheduling, and more in Linux Twitter traces. In general, there is no one-size-fits-all policy that performs best for all workloads. MRU 101 101 .
: , . = cache_ext and policies are open-source. We
cache_ext enables the experimentation necessary to maximize performance. LFU 215 110 .
Challenges expect most developers will use and
. 10000 53-FIFO 287 157 experiment with pre-existing policies.
Scalab|l|ty mmm Default (Linux) 120000 ¥ 5 W Default (L.inux) GET-SCAN 324 112 . C : | ' icies f d d
= Modern SSDs support millions of IOPS, so the page cache must handle millions of events per second ——— (L:,nUX)t) = S o i ((Lmur):)) | HD 367 165 an impiement new POoIICIES TOr advance
.] cache_ex O - B S3-FIFO (cache_ext ‘ ‘ '
= Any p.o||.c.|es and changes to the page cache must be low overhead ’g 25000 =0 cache o) § 100000 - B LHD (cache ext) MGLRU 489 105 use cases, policy innovations.
% Flexibility L o0 s LHD (cache_ext) @ LFU (cache_ext)
2 Thgre exists a wide variety of caching algorithms, many of which require custom datg structures | Q U {eache_ext g: 80000 Table 2. Lines of code in cache_ext policies.
= An interface for custom policies must be flexible enough to accommodate the diversity of caching algorithms - 15000 -
w7 |solation a Q. 60000
O lication’s policy should not interfere with those of other applications S %3 C L
= Une app S 10000 - i
= However, pages should still be able to be shared between applications g 5 400007 onctusion
\J Security = 50001 = 20000
= Custom policies must not lead to unsafe memory references or kernel crashes cache_ext enables safe and performant customization of Linux page
°TYCSB YCSB YCSB YCSB YCSB YCSB Unif Unif. 04 | cache policies, allowing applications to choose a policy matching their
A B C D E F (100/0)(50/50) Cluster 17 Cluster 18 Cluster 24 Cluster 34 Cluster 52 . . .
| needs. We believe cache_ext opens the door to exploring new dynamic
(@) YCSB workloads. (b) Twitter trace workloads. page cache policies and experimenting with policy innovations in a
Figure 3. Comparison of Linux and cache_ext policies on YCSB and Twitter cache trace workloads. realistic setting.

Full paper and code at github.com/cache-ext/cache_ext

github.com/cache-ext/cache_ext

