
cache_ext: Customizing 
the Page Cache with eBPF

Andrew Cheng

Tal Zussman Ioannis Zarkadas

Hubertus Franke

Asaf Cidon

Jeremy Carin

Jonas Pfe<erle

Columbia University IBM Research



TLDR;

● The Linux page cache doesn’t work so well with many workloads…
● cache_ext allows applications to customize page cache policies to 

improve performance using eBPF
● Experimentation with policies and application hints are necessary to 

maximize performance

2



Linux page cache significantly affects performance

LRU-approximation algorithm – doesn’t work well for all workloads!

Userspace

Page cache

File system

Disk

3

Kernel

Hardware 
(expensive!)



Linux page cache struggles with many workloads

HTAP-like:
Mix of Transactional (GET) 

and Analytical (SCAN)

Shinjuku (NSDI ’19),
Syrup (SOSP ‘21)

4

• Many tiny transactions
• A few massive background tasks



Linux page cache struggles with many workloads

Page Cache

99% GETs

5



1% SCANs

Linux page cache struggles with many workloads

Page Cache

Data is 99% SCAN 
and 1% GET

6

99% GETs



Linux page cache struggles with many workloads

Page Cache
7

We’ve been thrashed!



The page cache is not flexible 
enough

8

We are leaving performance on the table



A brief history lesson…

9



A brief history lesson…

10

September 17, 1991: Linux released!

Later added a global LRU policy

1991
Linux



The default policy is old

11

2002: LRU-approximation (current policy) added in Linux 2.5.46

Also in 2002: My coauthors Jeremy and Andy were born!

1991
Linux

2002
Current
Policy



Changing the policy is hard

12

2022: MGLRU merged in Linux 6.1 as new experimental policy!

• Several years of effort
• Still not default upstream
• Global policy change

1991
Linux

2002
Current
Policy

2022
MGLRU



A brief history lesson… (Hints)

13

1991
Linux

2002
Current
Policy

1981
Stonebraker

“For an OS to provide bu<er management, some means must 
be found to allow it to accept "advice" from an application 
program (e.g., a DBMS) concerning the replacement strategy.”

– Michael Stonebraker

2022
MGLRU



fadvise() isn’t powerful enough

14

1991
Linux

2002
Current
Policy

1981
Stonebraker

2005: fadvise() added in Linux 2.5.60
• 6 flags
• FADV_NOREUSE was a no-op until Linux 6.3 (2023)

2022
MGLRU

2005
fadvise()



Existing hint interfaces are insuDicient

15



Existing hint interfaces are insuDicient

🤨

16



Existing hint interfaces are insuDicient

🤦

17



Existing hint interfaces are insuDicient

😡

18



Existing hint interfaces are insuDicient

Hints don’t work!

🤬

19



How can we improve page cache behavior?

20

Change the policy Userspace hints Application-
level caching

Customizability ✅ ❌ ✅

Simplicity ❌ ✅ ❌

Isolation ❌ ✅ ✅ ❌/



We need to change the 
underlying policy

21

Like scheduling, networking, file systems, etc.



eBPF to the rescue!

• Safely run userspace code in the kernel
• Similar approaches taken for scheduling, networking, etc.

sched_ext, Syrup (SOSP ‘21), ghOSt (SOSP ‘21), XDP, XRP (OSDI ‘22), …

22

cache_ext: Custom page cache policies
• Simplicity: No kernel changes for developers
• Isolation: Per-cgroup policies
• Customizability: 

✅

✅

✅



cache_ext: Simple API yields powerful policies

…

eBPF Eviction Lists

…

eBPF Insertion 
Policy Function

23

eBPF Eviction 
Policy Function

…

eBPF Insertion 
Policy Function

eBPF Eviction 
Policy Function

Policy Functions
List 1 List 2



cache_ext: Simple API yields powerful policies

…

eBPF Eviction Lists

…

eBPF Insertion 
Policy Function

24

eBPF Eviction 
Policy Function

…

eBPF Insertion 
Policy Function

eBPF Eviction 
Policy Function

Policy Functions
List 1 List 2

List 2



cache_ext: Simple API yields powerful policies

…

eBPF Eviction Lists

…

eBPF Insertion 
Policy Function

25

eBPF Eviction 
Policy Function

…

eBPF Insertion 
Policy Function

eBPF Eviction 
Policy Function

Policy Functions
List 1 List 2

List 2

…



cache_ext: Simple API yields powerful policies

…

eBPF Eviction Lists

…

eBPF Insertion 
Policy Function

26

eBPF Eviction 
Policy Function

…

eBPF Insertion 
Policy Function

eBPF Eviction 
Policy Function

Policy Functions
List 1 List 2

List 2 List 1

…



cache_ext: Simple API yields powerful policies

…

eBPF Eviction Lists

…

eBPF Insertion 
Policy Function

27

eBPF Eviction 
Policy Function

…

eBPF Insertion 
Policy Function

eBPF Eviction 
Policy Function

Policy Functions
List 1 List 2

List 2 List 1

Most policies can be 
implemented with lists!…



Challenge: Ensuring memory safety

28

• eBPF eviction function can return any value… could be invalid
• Solution: Kernel maintains “valid pages” hash table
• Also stores the eviction list nodes

eBPF Eviction 
Policy Function

Eviction candidate ❓

✅

Valid 
pages
hash 
table

Kernel

Page 
cache



GET/SCAN doesn’t work well with default policy

Page Cache
29

1% SCANs

99% GETs



cache_ext enables application-informed policies

…

GET List

…

SCAN List

Policy
Function

PID Map

LevelDB

Write Read

Separate SCAN and GET 
data by request PID 30

Userspace Kernel



Application-informed policies improve performance

70% GET throughput 
increase

57% tail latency 
decrease

😍

31



Customizability yields better performance

No one policy performs best in all cases!

Twitter traces (OSDI ‘20),
S3-FIFO (SOSP ‘23),
LHD (NSDI ‘18)

32

Up to 37% throughput 
improvement for YCSB



cache_ext enables modern page cache usage

33

• In order to maximize performance, must be able to 
experiment

• Policies can be reused across applications
• Applications can have their own per-cgroup policies 

(multi-tenancy)



Thank you!

34

• cache_ext enables custom page cache 
policies to better match applications

• Up to 70% higher throughput and 58% 
lower tail latency

• Open source!

• More in the paper: Policies, multi-tenancy, 
admission filter, security, overhead…

Tal Zussman
tz2294@columbia.edu

Paper and code:

github.com/cache-ext/cache_ext

mailto:tz2294@columbia.edu
https://github.com/cache-ext/cache_ext
https://github.com/cache-ext/cache_ext
https://github.com/cache-ext/cache_ext


Linux page cache is widely used

35



A brief history lesson…

36

1991
Linux

2002
Current
Policy

1981
Stonebraker

“Please name a load that really actually hits the 
page replacement today. It smells like university 
research to me.”
– Linus Torvalds, 2006
In response to a page replacement policy framework

2022
MGLRU

2006
Linus

2005
fadvise()



Each application can run its own policy

Optimal performance when 
each cgroup runs a policy 

matching its workload:

50% and 80% improvements 
over baseline

cgroup 1

cgroup 2 37



Disk access reduction

38



LFU policy

39



cache_ext hooks

40


